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Abstract – The Gaussian Mixture Cardinalized Probabil-
ity Hypothesis Density (GM-CPHD) Tracker and the Maxi-
mum Likelihood-Probabilistic Data Association (ML-PDA)
Tracker were applied to the Metron simulated multi-static
sonar dataset created for the MSTWG (Multistatic Tracking
Working Group). The large number of measurements at each
scan was a problem for the GM-CPHD. Winnowing by a de-
tection test on SNR and Doppler followed by predetection
fusion (contact sifting) had to be performed before tracking
with the GM-CPHD to obtain good performance. Due to
the nature of its likelihood formulation, ML-PDA was able
to process the measurements directly and reasonable results
for all five scenarios were achieved. Plots of the tracks ob-
tained on the five scenarios the Metron dataset with both
trackers are provided.

Keywords: GM-CPHD, ML-PDA, Metron, predetection
fusion.

1 Introduction
The Metron dataset [1] was generated by Kirill Orlov of
Metron, Inc. to continue the evaluation of the tracking al-
gorithms of the MSTWG participants. It was intended to be
the follow-up to the SEABAR and TNO-Blind datasets in
terms of providing a challenging/realistic scenario. A cou-
ple inaccuracies have been discovered in the documentation
describing the dataset and are corrected here.

GM-CPHD and ML-PDA represent different paradigms
and we are interested to see how they compare when faced
with a difficult dataset such as Metron. Our work with
the GM-CPHD and the ML-PDA applied to the previous
MSTWG datasets can be found in [2] and [3].

2 GM-CPHD
The Cardinalized Probability Hypothesis filter is a recursive
filter that propagates both the posterior likelihood of (an un-
labeled) target state and the posterior cardinality density, i.e.
the probability mass function of the number of targets [4].
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contracts N00014-07-1-0055 and N00014-10-10412.

Under linear Gaussian dynamics and the assumption of
state independence for the probability of detection and the
probability of survival, closed form filter equations were
given in [5]. In that work, the posterior PHD surface was ap-
proximated by a Gaussian Mixture and is shown to remain a
Gaussian Mixture after the update step. Hence, the propaga-
tion of the whole surface could be replaced by the propaga-
tion of the weight, mean and covariance of each mode in the
mixture. Mode means and covariances are propagated by an
Extended Kalman Filter while mode weights are calculated
using the PHD equations. In common with other similar
trackers such as the Multiple Hypothesis Tracker (MHT),
the number of Gaussian modes could increase exponentially
with the number of scans, and as such track-management
(pruning, merging, etc.) is necessary to make the approach
practical.

In our analysis [6], we divide the state space into infinites-
imal bins and for each bin, we ask the question, “Is there a
target at this location?” The filter contains equations for the
prediction and the Bayesian update of the probability of each
bin containing a target. Integration of the PHD surface over
a volume gives the expected number of targets therein. In the
limiting case in which bins’ volumes go to zero, the filter’s
equations converge to the PHD/CPHD filter of Mahler[4]
and to the Intensity Filter of Streit [7].

We employ the GM-CPHD filter with a linear motion
model and a nonlinear measurement model in which range,
bearing and range rate (when available) form the measure-
ment. Our implementation is thus capable of processing
both Doppler sensitive (i.e., a constant frequency pulse -
CW) and Doppler insensitive waveforms (i.e., a linear fre-
quency modulated pulse - LFM). For LFM waveforms, the
range rate measurement (ṙ) is not significant and hence ig-
nored. In its original form the GM-CPHD filter is not able
to provide scoreable tracks, so a track management scheme
was devised [8] [9]. This is a set of policies dealing with
events such as track initiation, update, merging, spawning
and deletion.
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3 ML-PDA
The Maximum Likelihood Probabilistic Data Association
algorithm is a batch tracker that assumes some parameter-
ized, determinisic motion for a target. It makes some simple
assumptions about a target and the environment, and then
maximizes the likelihood ratio function that results from
these assumptions. In a sense, it is simply a batch detector.
It was first developed in a passive narrowband application in
[10]. Subsequently, in [11] it was expanded to a bistatic ac-
tive application, which is how we currently employ it. The
assumptions that go into ML-PDA and the development of
the likelihood function are well documented in [12].

For this work, we implemented ML-PDA as a sliding
batch/window tracker. The ML-PDA window length was set
to 1800 seconds (11 pings), and all frames that fell within
this window were used for the tracker cycle (each frame
consists of the measurements from a unique source-receiver
combination at a certain time). At every tracker update, the
window was shifted forward 360 seconds. Within the win-
dow, target motion was parameterized as a straight line. This
window size is long enough to pick out deterministic target
motion from random clutter, while short enough to approxi-
mate the motion of a moderately maneuvering target with a
series of line segments.

The ML-PDA, as formulated in [12], is a single target
tracker. Work has been done [13], [14] to extend ML-PDA
to a multi-target framework, but in this implementation, we
took a different approach for dealing with multiple targets.
For each window, the (single-target) likelihood ratio func-
tion was maximized. If a target was present, as determined
by the peak of the likelihood ratio exceeding some thresh-
old, a track was declared. Next, the most probable mea-
surement associated with the discovered track was removed
from each frame of data. (This is possible because one of the
assumptions of ML-PDA is that at most one target detection
is present in each frame.) The optimization over the win-
dow was then redone, and this process was repeated until no
more targets were found in a window.

For the Metron dataset, ML-PDA was optimal in the sense
that it used all available data in the measurements. In addi-
tion to using the positional measurement to find targets, it
used amplitude data as well as Doppler information when
available. Specifically, in the case of Doppler, our imple-
mentation took advantage of both the Doppler from the tar-
get, which increased the value of the likelihood ratio around
an actual target, as well as the distribution of the Doppler
from clutter points, which helped to suppress false alarms.

4 Metron Dataset
The surveillance area is 72000 × 72000 m2. The 25 sta-
tionary sensors are laid out as two concentric square grids
as seen in Figure 1. All the sensors are receivers with
the exception of the 4 marked sensors which are colocated
source/receiver units.

Figure 1: Ground truth in scenario 1.

Two waveform types are simulated: CW and FM.
CW yields position and Doppler information for contacts,
whereas FM only yields position information. The ping
schedule is the following: S1 CW, S2 FM, S3 CW, S4 FM,
S1 FM, S2 CW, S3 FM, S4 CW with a ping occuring every
180 seconds for a total of 200 pings.

There are 4 targets. Each target completes four cycles
of motion about the perimeter of a square region. Target
motion specifications can be found in Table 1. The contacts
generated by targets 2 and 3 have been labeled [1].

Measurements were generated with the following errors:

• Sound speed is 1500 m/sec

• Bearing error is normally distributed with mean 0.0◦

and standard deviation 8.0◦

• Time difference of arrival (TDOA) error is normally
distributed with mean 0.0 sec and standard deviation
0.4 sec

• Bistatic Doppler error is normally distributed with
mean 0.0 m/sec and standard deviation 0.5 m/sec (CW
only)

5 Winnowing
The Metron dataset contains too many contacts at each scan
for the GM-CPHD to handle successfully and therefore, a
winnowing step was devised. For a CW contact, we winnow
by a simple detection test on SNR and Doppler (see Eq. 1).
For an FM contact, we winnow by SNR only. Selecting a
suitable threshold requires tuning. The contacts that survive
the winnowing are fed to the predetection fusion stage.

f1
f0

(snr)× f1
f0

(Doppler) ≷ threshold (1)



Table 1: Target Parameters.
Target1 Target2

Speed 6 6
Start (36000,49000) (48000,49000)
Box 13500× 13500 13500× 13500
Motion Clockwise CounterClockwise
Label 0 1

Target3 Target4
Speed 3 3
Start (24250,30250) (47750,30250)
Box 6750× 6750 6750× 6750
Motion CounterClockwise Clockwise
Label 1 0

5.1 Doppler
In the Metron dataset, the Doppler for clutter contacts is
drawn from a normal distribution with a mean of 0 knots
and standard deviation of 2.5 knots. Therefore we can cal-
culate:

f0(x) =
1√

2π ∗ 2.5knots
∗exp

(
− x2

2 ∗ (2.5knots)2

)
(2)

The predicted Doppler for a true contact is:

x̂ =
ẋt(xt − xs) + ẏt(yt − ys)

2ST
+
ẋt(xt − xr) + ẏt(yt − yr)

2TR
(3)

where ẋt, ẏt are the target speed components, (xs, ys) is the
location of the source, (xr, yr) is the location of the receiver
and ST and TR are the distances between source and target,
target and receiver.

Given the Doppler measurement error described in Sec-
tion 3, we can write:

f1(x) =
1√

2π ∗ 0.5m/sec
∗ exp

(
− (x− x̂)2

2 ∗ (0.5m/sec)2

)
(4)

5.2 SNR
We have observed that the clutter SNR is exponential in dB
(see Figure 2). This is consistent with the documentation,
but such distributions are usually encountered before con-
version to decibels. We can write:

f0(y) =
1

θ
∗ exp

(
− (y − τ)

θ

)
∗ u(y − τ) (5)

where u is the step function.
We have applied a fit to the plot in Figure 2 to determine

the parameter θ. Metron contains only contacts with SNR
above τ = −1.5dB for FM pings and above τ = −5.5dB
for CW pings; we obtained θ = 2.95 for CW and θ = 2.11
for FM.
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Figure 2: Clutter SNR (semilog plot).

Figure 3: Target strength.
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Figure 4: Histogram of tagged observed-predicted SNR.



The predicted contact SNR for target originated contacts,
ŷ, is modeled using the following equations:

ŷCW = 65− TLST − TLTR + TS (6)

ŷFM = 69− TLST − TLTR + TS (7)

where TLST is the transmission loss between the source
and target, TLTR is the transmission loss between the tar-
get and the receiver, and TS is the target strength. Given
entities A and B that are R meters apart, TLAB is computed
as 10log10(R). TS varies by target type, and is a function
of the bistatic aspect angle. Our approximation of the target
strength shown in the documentation can be seen in Figure
3. All the 4 targets in scenario 1 of the Metron dataset are of
type 1.

The documentation also specifies that a simulated con-
tact SNR is drawn from a normal distribution with the mean
computed in this way and a standard deviation of 8 dB.

By plotting the difference between the observed contact
SNRs and the predicted contact SNRs (Figure 4), some in-
accuracies in the documentation were revealed: a standard
deviation of 6dB should be used instead of 8dB as described
and the predicted SNR in Eq. 6 and Eq. 7 should be 10dB
higher.

With these in mind, we can write:

f1(y) =
1√

2π ∗ 6dB
∗ exp

(
− (y − ŷ)2

2 ∗ (6dB)2

)
(8)

6 Predetection Fusion
We believe that the multi-sensor PHD needs further investi-
gation. There are good but contending ideas from Dr. Roy
Streit and Dr. Ron Mahler. The fusion concern stems from
the PHD assumption that the bins are independent after ev-
ery update, and if the updates are simultaneous this is a prob-
lem. Hence we chose to do predetection fusion/contact sift-
ing [15].

Usual predetection fusion is simply a likelihood ratio test.
But in this (practical) case the alternative hypothesis is com-
posite: the location of the target is not known so a more so-
phisticated fusion scheme must be used. We have observed
that the measurement errors of the Metron dataset result in
the measurements’ Cartesian covariance ellipses being very
eccentric. Some uncertainties are as much as 10-20km (ma-
jor axis of ellipse). Therefore, for each contact, we gener-
ate 100 samples via Monte Carlo according to the contact’s
measurement error covariance matrix. Without this step a
large covariance measurement would still only be “seen” in
the grid cell at the measurement’s nominal value.

We then “sift” these according to a grid (we use 25× 25):
if a contact yields a sample that is quantized to a grid cell,
then that contact is added to the cell’s list. We test each grid
cell’s number of hits against a threshold calculated accord-
ing to binomial distribution and desired fused probability of
false alarms, Pfa. For cells that pass the test, a Probabilis-
tic Multi Hypothesis Tracker (PMHT) measurement model
[16] and the Expectation-Maximization (EM) algorithm are

0 1 2 3 4 5 6 7

x 10
4

0

1

2

3

4

5

6

7

x 10
4 Time = 0     CW      |Z|=69

Figure 5: Winnowing on the first scan of data.
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Figure 6: Predetection fusion on the first scan of data.

used on that cell’s listed contacts to refine the estimated mea-
surement location and to estimate the posterior covariance.
Afterwards, we merge detections that gate with each other,
since often neighboring cells have used the same detections
from the initial Monte Carlo step.

Figure 5 shows the initial scan of data (25 pings, one from
each receiver) from the Metron dataset after contact win-
nowing based on amplitude and Doppler. Note that for target
3, without the Monte Carlo step the tagged measurements
(the measurements with a blue dot inside the red square)
would not be associated together. Figure 6 shows the same
scan of data after the predetection fusion step. Although
there are still many contacts, note the single low-covariance
ones at the southwest corner of target 1, southeast corner of
target 2, northeast corner of target 3 and northwest corner of
target 4 (the starting positions of the four targets).
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Figure 7: Scenario 1 GM-CPHD tracks (scans 1-50).
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Figure 8: Scenario 1 GM-CPHD tracks (scans 50-100).

7 GM-CPHD Results
It should be mentioned that running the GM-CPHD without
winnowing and without contact sifting resulted in unsatis-
factory performance. Our GM-CPHD results on the Metron
dataset were made possible by the addition of winnowing
and predetection fusion steps before the tracker is run. Plots
of the generated tracks are displayed in Figures 7-14. The
ellipses reveal the location and covariance of the Gaussian
modes, the magenta dots represent the measurements at the
current (here, last) scan.

The results on scenario 1, for which the ground truth is
provided, were obtained with perfect initialization, i.e. a
mode of weight 1 had been placed at the initial scan at the
exact location of each target. This was not the case for the
other scenarios. GM-CPHD successfully followed all tar-
gets as they move four times around their square trajectories.

In scenario 2, GM-CPHD discovered 3 targets, each fol-
lowing a rectangular trajectory. Their being in close prox-
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Figure 9: Scenario 1 GM-CPHD tracks (scans 100-150).
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Figure 10: Scenario 1 GM-CPHD tracks (scans 150-200).

imilty while the measurements were very noisy made for a
challenging situation but the tracker was able to keep up and
output a nice figure eight. In scenario 3, we believe that
there are 2 targets present: a target following a bow tie path
which intersects with a target following a straight line. In
scenario 4, GM-CPHD has revealed 3 targets. Two of them
have parallel straight paths and the third crosses these at al-
most a right angle. Scenario 5 has proven to be the most dif-
ficult scenario. We estimate there are two targets present -
one with a sinusoidal trajectory and one moving in a straight
line.

For all scenarios, the tracking performance was good as
little fragmentation was present, the track detection proba-
bility was high, the number of false tracks was very low and
therefore the false alarm rate was very low, while the RMS
error was acceptable.

Our tracker does not include an IMM at the current time
and our work on these scenarios has underlined the need
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Figure 11: Scenario 2 GM-CPHD tracks.
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Figure 12: Scenario 3 GM-CPHD tracks.

for it, since an Interacting Multiple Model (IMM) estimator
would increase the performance on datasets, such as Metron,
in which there are sharp turns along the target trajectory.

8 ML-PDA Results
The ML-PDA algorithm perfomed rather well on the Metron
dataset. It did not require any preprocessing of the data (i.e.
it did not require winnowing or contact fusing). The ML-
PDA is in a sense a batch detector, and its likelihood func-
tion formulation essentially has the winnowing function de-
scribed above built into it. Furthermore, the ML-PDA for-
mulation does not depend on the number of sensors that are
providing data to it. As long as one of the basic assumptions
of ML-PDA is not violated – at most one return from the
target is present in any given frame – the only limitation to
ML-PDA in terms of the number of sensors feeding informa-
tion to it is computer processing time. Thus, the ML-PDA
algorithm does not require the predetection fusion algorithm
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Figure 13: Scenario 4 GM-CPHD tracks.
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Figure 14: Scenario 5 GM-CPHD tracks.

described above.
Three track initialization methods were tried for ML-

PDA: a two-point initialization, a one-point initialization
and a grid space initialization. In general, the grid space ini-
tialization worked the best, although it required the longest
computation time. In some cases, though, the two-point
initialization scheme worked very well, which is desireable
since it ran the fastest, and it required no assumptions about
the target motion. The grid initialization and the one-point
initialization both required assumptions about possible ini-
tial courses and speeds.

For Metron scenarios 1-3, the ML-PDA algorithm pro-
duced good results. For scenario 1, it picked up all four
targets doing multiple rectangular revolutions. On scenario
2, the algorithm detected targets that appeared to trace out
an “eight.” For scenario 3, a target appeared to follow a
“bowtie” pattern, and there was a second target that crossed
the middle of the bowtie. Scenarios 4 and 5 appeared some-
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Figure 15: ML-PDA for Metron scenario 1.
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Figure 16: ML-PDA for Metron scenario 2.

what more cluttered, although in each one, a stationary tar-
get was definitely picked out. In scenario 4, this appeared at
(x, y) = (40000, 10000) meters, while it scenario 5, the sta-
tionary target was at (x, y) = (45000, 60000) meters. These
stationary targets were also found with the GM-CPHD (see
Figures 13 and 14).

9 Conclusions
The GM-CPHD and ML-PDA trackers were applied to

the Metron simulated multi-static sonar dataset created for
the MSTWG. Metron proved to be an extremely challenging
dataset in which the data is extremely noisy and obeys strong
statistical models (Doppler, clutter, signal-excess, aspect-
dependent SNR), more than would practically be found.

Feeding the tracker all the measurements in a scan, i.e.
the combined measurements from 25 receivers obtained at
the same time stamp, resulted in considerably long run time
and poor performance of the GM-CPHD as such a large
number of measurements at each scan combined with an ex-
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Figure 17: ML-PDA for Metron scenario 3.
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Figure 18: ML-PDA for Metron scenario 4.
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Figure 19: ML-PDA for Metron scenario 5.



tremely low probability of detection was a problem for the
track management. The ML-PDA was not affected by this
problem.

The Metron multisensor data required winnowing by am-
plitude and Doppler and a predetection fusion scheme to
be applied before the GM-CPHD tracker. This approach
worked well: on scenario 1 the GM-CPHD tracks are in the
vicinity of the ground truth and on scenarios 2-5 the GM-
CPHD results are in agreement with the ML-PDA results.

The ML-PDA algorithm was also applied to the Metron
dataset. Due to how its likelihood function is formulated,
it was able to process the Metron data directly and obtain
results without the need for winnowing or predetection fu-
sion. It was able to get good results for scenarios 1, 2 and 3,
with slightly noisier results for scenarios 4 and 5. The ML-
PDA did sometimes have trouble with contacts that abruptly
maneuvered. Future work should add the capability of ma-
neuver models into the ML-PDA framework.

GM-CPHD and ML-PDA discovered the same targets in
all scenarios and were very similar in performance, with
the ML-PDA generating slightly more clear tracks with no
predetection fusion needed. This reinforced the claim that
ML-PDA is effective in tracking very low observable targets
where target signal-to-noise ratios require very low detec-
tion processing thresholds to reliably give target detections
[14]; the Metron dataset provided such a situation as the
probability of detection, PD, per sensor per scan was around
0.12 and the target SNR was generally not much higher than
the clutter SNR. However, ML-PDA uses low-thresholded
measurement data over a batch of measurement frames and
computes track estimates using a sliding window. On the
other hand, GM-CPHD is not a batch algorithm yet it shows
comparable performance to the ML-PDA.
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